
Pergamon 
I. ~ Maths Mechs, Vol. 62, No. 1, pp. 159-162, 1998 

@ 1998 Elsevier Science Ltd 
All fights reserved. Printed in Great Britain 

PII: S0021--8928(98)00018-5 oo21--8928/98 $24.00+0.00 
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Integrable perturbations which depend only on the coordinates of a Birkhoff billiard inside an ellipse are considered. The class 
of integrable potentials which are polynomials in x, y, x -1 andy q is described completely. © 1998 Elsevier Science Ltd. All fights 
reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

A Birkhoff billiard normally describes a particle which moves freely inside a certain region in a plane. On colliding 
with the boundary of that region, which is convex, there is absolutely elastic impact with equal angles between the 
path and the boundary before and after impact. We will call the behaviour on the boundary the billiard law. 

There are a number of  integrahle billiard problems (cf. [1, 2] and the references therein). The best known of 
these is the problem inside an ellipse. Integrable perturbations of this and related integrable problems (geodesics 
on an ellipsoid, Neumann's problem and Kepler's problem) were studied even by the classics [3]. Interest in these 
problems has recently been revived [4-9]. 

We shall discuss the question of the integrability of problems of the motion of a particle inside an ellipse under 
the action of a potential force when the behaviour on the boundary corresponds to a billiard law. Kozlov [4] has 
introduced the family of integrable potentials 

V=k(x2 +y2)+--~+ ~2 + ~1+'~2, 0~, ~, "/iER 
x y r I r 2 

where ri are the distances to the foci of the ellipse. Using Kozlov's ideas, this class of potentials can be enlarged 
considerably by the methed described below. We will obtain two families of potentials: (1) in the form of polynomials, 
(2) in the form of Laurent polynomials. Although polynomial potentials have arisen in similar problems before 
[10, 11], potentials in the form of Laurent polynomials are basically new and have a non-trivial dynamics. With 
the proposed method we can find all the integrable potentials of a certain type in explicit form, and also prove 
that there are no other potentials in that class. 

2. O N E - P A R A M E T E R  S O L U T I O N S  

The problem of the free motion of a particle inside an ellipse with semi-axes a and b and a billiard law on the 
boundary has the well-known complementary integral 

F0 =k2  f y2 (gy_x,))2 
a b ab 

Kozlov's method involved finding potentials Vfor which there is a complementary integral of the form F = F0 
+ f, where the function f depends only on the coordinates. Choosing a perturbation which depends only on the 
coordinates ensures that F is conserved on impact at the boundary. The requirement that the value o f F  shall also 
be conserved inside the ellipse (where the equations of motion are.;/= -Vx, j; = -Vy) yields a consistency condition 
for V, which can be described by the following equation 

~,Vxy + 3(yVx-xVv)+(y2-x2)Vxy + xy(V~-Vvy)=O, ~ ,=a-b (2.1) 

We will seek solutions of  Eq. (2.1) in the form of Laurcnt polynomials in x, y, that is 

V(x, y, ~.)= ~, am, n(k)xmy n, k, s e Z  
s~m.n>_k 

(2.2) 

Substituting (2.2) into (2.1), we obtain a system of difference equations 
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3.mnan,m = (n + m)(man_2, m - nan. m-2 ) (2.3) 

It will be assumed below that ~. ~ 0. We will take the degree of an element am~ to mean the sum m + n. The 
following lemma follows from (2.3). 

Lemma 1. If amoco is an element of the lowest non-zero degree, then no = 0 or m0 = 0. 
Let m0 denote the lowest non-zero degree. Then all the elements, apart from a0mo and ara~O, are equal to zero 

and at least one of the elements ao¢~o, amo.O is non-zero. 

Lemma 2. The elements a2k¢~0 can be expressed in terms of a0cn0 by the formula 

(2+m°)(3+m°)'"(2k+m°)ao.mo, k e N  
a2k'"~ = (2~,) tc k! 

Suppose that rn0 < 0. The following proposition follows from Lemmas 1 and 2. 

Proposition 1. (a) If at least one of the elements am, n, mn ~ 0 is non-zero, then m0 = -2k  for some k ~ N; 
(b) a2k+l,0 = a0,2k+l = 0 for any k ~ Z. 
Let 

k-2 .k-i-I 
ek(x, y, 3, ~ ) =  ~ (-1) '  E Ukis( x, Y, ~., ~)+~y-2/c 

i=0 s=l 
k-2 k-i-I 

Wk(x, y, ~., ~ ) =  ~ ~'. (-1)sUkis(y, x, ~, ~)+ff.x -2k 
i=0 s=l 

( / U~s(X, y, ~., a)= s + i - I  [1 (k ~ ) ][2- (k - i ) l . . . [ s - (k - i ) l_  2s -2k+2i 
i ~ ax y 

Theorem 1. For any ct the functions Vk(X,y, g, ct) and Wk(X,y, ~., ct) are solutions of Eq. (2.1) of the form (2.2) 
with non-zero element of lowest degree a0cn = ct and am 0 = ct respectively. 

. 0 0,  

The proof of Theorem 1 uses the following lemma. 

Lemma 3. If a(1, n) = 1 = a(k, 1) and a(n, m) = a(n - 1, m) + a(n, m - 1), then 

a(n, m ) = (  n+m-2~n-! ) 

We note that Vk(x,y, 3,, ~) = Wk(y,x, -Z,, ¢t) (according to the general property of Eqs (2.1): if tp(x,y) is a solution 
of Eq. (2.1) with parameter  ~, then tp(x, y) is a solution of Eq. (2.1) with parameter -~.. By the potential I/1 and 

2 2 W1 we must understand Kozlov potentials ~ x  and ~/y. 

Example 1. For V2(x,y, ~.) = (3, -x2)/(3.y4), the complementary integral is given by the formula 

F = 2 2 4  2~ 2 (.i:y-yx) 2 ~_2x4+(2b-4a)x2+2y2x 2 
a b ab ~zlby 4 

The potentials described in Theorem 1 depend on one parameter- - the  first non-zero element a-z~,0 or a0,-2g. 
We shall call them one-parameter potentials. We will be interested in the investigation of  more complicated 
potentials below. 

3. M U L T I - P A R A M E T E R  P O T E N T I A L S  

Lemma 4. If  the potential Vhas one non-zero element among elements of the form a0, k and at, o, say, a0,-z~l = 
t~l . . . . .  a0,-z~, = as, then 

$ 

V= ~,Vki(x, y, Ot i) 
i=1 

The potentials discussed in Lemma 4 will be called s-parameter potentials. 

Example 2. Consider the case of the two-parameter potential 
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+ o~ 4x_6 + I~.+oc 2x_4 W~ : O~x-6 + 2-~'~ y 2 x-6 + ~x "4 - ~  y T y 

LetAk = {Vk(x,y, ct) i{x ~ R} and Bk = {Wk(x,y, ¢t) I 0t ~ R} denote the potential spaces in which m0 < 0. There 
are also potentials for which m0 > 0. Let Ct be the space of  solutions of Eq. (2.1) which are polynomials in x ,y  of 
degree not more than 2/. Their general term is given by the formula 

m-t n + m - t  m ( - l )  ( n_ l  - l ) ( l + m ) ( 2 + m ) . . . ( n + m )  
a2n, 2m = ~, ao.2t + n!~, n+m-t  t=l 

( .__l)mln+~._~_l |( l /--  . X + n X 2 + n ) . . . ( m + n )  / I  

+X 
s=l m[ 2~s+rs-' a2t.o, n + m < l  

and the initial conditions a0,n, an,o, where 1 <~ t <~ l, are determined from the system of linear equations 

2ma2(/-m), 2m = ( 2 ( l - m ) +  2)a2{l-ra)+2,2rn+2, O < m ~ l - I  

Example 3. When l = 2 we obtain 

V=I~x 2 +ay2 +~(~_l~)x2y2  + ( r l ;  13)(x a + y4) 

Example 4. Let l = 3, a0, 2 = 5, a2, 0 = ~, a4, 0 = T. Then 

2 
a2,2 = ( ~ -  ~), ao.4 = ~-(Ot - ~ ) - ' y  

a0,6=aa,0=-~-2{ot-[~)-~-,  a4,2 =a2.4=3a0,6 

For a mechanical realization of these examples, we can consider a billiard as a system in which a particle of unit 
mass moves inside an ellipse in a gravitational field. The distribution of masses inside the ellipse is determined by 
the density p, which is given, by Poisson's equation, in the form 

p(x, y) = AV(x, y)/(4~) 

Finally, we have the following theorem. 

Theorem 2. The solution space R of Eq. (2.1) of the form (2.2) can be described by the formula 

1=! 

4. C O N C L U D I N G  C O M M E N T S  

1. We will now consider the case X = 0. 
Then system (2.3) reduces to the form 

(n + m)(man_2.~ - na~, m-2 ) = 0 

When n = - m  we obtain solutions of the form Vm(x,y) = o{x~-~y m and Wm(x,y) = c~xm-Zy -m-2. 
In other words, if amo, no ~ 0 is an element of the lowest degree then m0 = 0 (or no = 0) and no = 2k, k e N (or 

rnd9 = 2k, k ~ N). The general formula for an, m in this case is 

k ( k - l ) . , . ( k - s + l )  
a2k-2s, 2s = $! 'a2k. 0, $ = 1, .... k - l 

2. Similar methods can be used for the problem of geodesics on an ellipsoid and the problem of billiards inside 
an ellipsoid. 
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